www.istock.com/AndreyPopov
Theorie | 08.05.2019 (editiert am 14.05.2019)

Sind Ersparnisse ohne Schulden denkbar?

Eine unnötige Hypothek belastet Günther Grunerts Betrachtung der Saldenmechanik – sein Begriff der Ersparnis. Die Entwicklung des Weltreichtums wäre fatalerweise ein Nullsummenspiel.

Günther Grunert hat viel zur Kenntnisnahme und zum Verständnis der Gedanken des großen Ökonomen Michał Kalecki beigetragen (etwa hier). In seinem jüngsten Beitrag zu dieser Thematik klärt Grunert über Nutzen und Grenzen der Saldenmechanik auf. Seinen in vielen Punkten richtige und hilfreiche Darstellung belastet er aber mit einer unnötigen Hypothek. Es ist der Umgang mit dem Fachbegriff „Sparen“ oder „Ersparnis“ in der Volkswirtschaftlichen Gesamtrechnung (VGR). Mit diesem Problem hatten auch schon die beiden Schweizer Urs und Wilhelm im Artikel der Redaktion zu „Sparen und Überschüssen“ zu kämpfen.[i]

Grunert verweist zwar auf vier unterschiedliche Bedeutungen des Begriffs „Sparen“. Im Folgenden identifiziert er das Sparen aber nicht mit der in der Volkswirtschaftlichen Gesamtrechnung (VGR) üblichen Standardbedeutung – der „Reinvermögensänderung“ – sondern mit Einnahmeüberschüssen, also einer positiven Veränderung des Nettogeldvermögens (NGV). Wenn wir verallgemeinern, würde ein so definiertes Sparen als „S“ in der Gleichung der VGR sowohl die positive wie negative Veränderung des Nettogeldvermögens einschließen, also auch das „Entsparen“.

Wolfgang Stützel hatte diese Gleichsetzung von „Ersparnis“ mit „Einnahmeüberschuss“ bereits 1953 als Missverständnis und Quelle unnötiger Verwirrungen und Problemverschlingungen identifiziert[ii]. Es lässt sich nun auch im Text von Grunert finden: Die Identifikation von  Ersparnis(S) mit Veränderung des Nettogeldvermögens ( ∆NGV) hat nämlich folgende Konsequenz: Bei ausgeglichenem Staatshaushalt und ausgeglichener Leistungsbilanz wäre es dem inländischen Privatsektor (private Haushalte und Unternehmen) nicht mehr möglich zu investieren.Die Korrektur dieser Problemverschlingung wird nicht die Kernaussagen Grunerts beeinträchtigen – im Gegenteil: Sie ist geradezu ein Beleg für seine These, dass die Saldenmechanik „eine rein logische Darstellung gesamtwirtschaftlicher Größen in einer monetären Marktwirtschaft“ ist. Und weiter:

„Wer gesamtwirtschaftlich argumentiert und dabei in Widerspruch zu Zusammenhängen gerät, die sich aus der Saldenmechanik logisch zwingend ergeben, dem ist ein Denkfehler in seinen Überlegungen unterlaufen.“

Dieses Ergebnis – die Unmöglichkeit der Investition im Privatsektor unter den genannten Bedingungen – ergibt sich mit mathematischer Unerbittlichkeit aus den von Grunert ansonsten korrekt benutzten Gleichungen der VGR. Grunert diskutiert das Thema zunächst für den Fall der geschlossenen Wirtschaft. Was in der Konsequenz damit gleichbedeutend ist, auch bei einer offenen Volkswirtschaft eine ausgeglichene Leistungsbilanz anzunehmen. Der Außenkanal hätte dann keinen Einfluss auf das inländische Nettogeldvermögen. Denn die Leistungsbilanz ist nur ein anderer Ausdruck für die Veränderung des inländischen gegenüber dem ausländischen Nettogeldvermögens. Ein Leistungsbilanzüberschuss ist die Vermehrung des inländischen NGV und die entsprechende Verminderung des NGV im Rest der Welt. Das ist einfachste, triviale Saldenmechanik, die niemand infrage stellt.

Wenn nun in einer Volkswirtschaft der Privatsektor per Saldo einen Einnahmeüberschuss erzielen soll oder will, so ist das unter den beiden folgenden Bedingungen saldenmechanisch ausgeschlossen:

  1. wenn Staatsausgaben und -einnahmen gleich groß sind und außerdem kein Leistungsbilanzsaldo vorhanden ist oder
  2. wenn wir eine geschlossene Volkswirtschaft annehmen, in der der Staat einen ausgeglichenen Haushalt hat.

In beiden Fällen kann der Privatsektor sein Nettogeldvermögen nicht mehren, es gibt für ihn niemanden mehr, der die Schuldnerposition einnimmt und damit einen Ausgabenüberschuss hat.

Wenn das Sparen (S) mit ∆NGV, also Nettogeldvermögensmehrung, identifiziert wird, kann bei ausgeglichenem Budget und ausgeglichener Leistungsbilanz oder geschlossener Wirtschaft im saldierten Sektor der privaten Haushalte und Unternehmen gar nicht gespart werden. Grunert nutzt in seiner Ableitung die bekannte Gleichung der Finanzierungssalden der Sektoren:

Privatsektor  +  Staat   +  Ausland = 0
(S – I)      + (T – G) +  (M – X)   = 0

In Worten: Wenn man zur Differenz der Ersparnis und Investition im Privatsektor den staatlichen Budgetsaldo und den Leistungsbilanzsaldo (mit umgekehrtem Vorzeichen) addiert ist das Ergebnis immer null. Mit unseren Voraussetzungen des ausgeglichenem Staatshaushalts (T = G) und der ausgeglichenen Leistungsbilanz (M = X) ergibt sich sofort: „S – I = 0“ oder auch das bekannte „S = I“, die triviale Ex-Post-Identität der Ersparnisse und Investitionen der Gesamtökonomie. Grunert stellt korrekt fest:

„In einer solchen Volkswirtschaft kann der Staatshaushalt nur ausgeglichen sein (T = G), wenn die Ersparnisbildung des Privatsektors genau seiner Investitionstätigkeit entspricht (S = I).“

Grunerts Identifikation der Ersparnis mit der Veränderung des Nettogeldvermögens (von S mit ∆NGV) ergibt nun fatalerweise für den Privatsektor „I = 0“, wenn Staat oder Ausland als Schuldner für die saldenmechanische Gegenbuchung nicht zur Verfügung stehen. Für die Weltökonomie gilt dieser Umstand immer, dort saldiert sich das Nettogeldvermögen stets zu null. Mit Grunerts Definition wären also in der Gesamtökonomie gar keine Investitionen möglich, weil dort dieses Sparen unmöglich ist.

Unter Benutzung der Identifikation von Ersparnis mit Nettogeldvermögensmehrung wird immer wieder gerne auf die Notwendigkeit der Verschuldung für die wirtschaftliche Entwicklung geworben.[iii] Der Identifikation von Sparen (S) mit der Veränderung des Nettogeldvermögens (∆NGV, im positiven Fall Mehrung) liegt aber ein leicht aufzuklärendes Missverständnis der VGR zugrunde. In der VGR bedeutet die Investition (I) eine Mehrung des Sachvermögens (SV). Die Addition des Sachvermögens mit dem Nettogeldvermögen ergibt das Reinvermögen (RV).

Unter Verwendung von Grunerts Begriff der Ersparnis wäre in der Weltökonomie also eine Steigerung des Reinvermögens unmöglich, weil dort ∆NGV – wie überhaupt das ganze Nettogeldvermögen unabhängig von irgendwelchen Leistungsbilanzsalden – immer null ist und dann wegen S = I auch die Sachvermögensmehrung null sein muss. Die Entwicklung des Weltreichtums wäre fatalerweise ein Nullsummenspiel.

Dem ist zum Glück nicht so, wenn wir die in der VGR unangebrachte Identifikation von „S“ mit „NGV-Mehrung“ (bzw. -Minderung) aufgeben und stattdessen die in der VGR gebräuchliche Definition der Ersparnis (S) als Mehrung (bzw. Minderung) des Reinvermögens (RV = Sachvermögen + NGV) verwenden:

S = ∆RV = I + ∆NGV = ∆SV + ∆NGV.[iv]
Ersparnis = Reinvermögensveränderung = Investition + Nettogeldvermögensänderung
= Sachvermögensänderung + Nettogeldvermögensänderung

Mit dieser Definition von S ergibt sich auch sofort die bekannte Feststellung, dass in einer abgeschlossenen Ökonomie die Vermehrung des Reinvermögens nur als Vermehrung des Sachvermögens möglich ist.

Damit wäre noch nicht erwiesen, dass die Reinvermögensmehrung in der Gesamtökonomie oder einer geschlossenen Volkswirtschaft tatsächlich möglich ist. Es ist nur gesagt, dass sie saldenmechanisch zwingend eine Sachvermögensmehrung sein muss, wenn es sie überhaupt gibt.

Die faktische (nicht saldenmechanisch begründete) Möglichkeit der RV-Mehrung ist allerdings leicht ersichtlich: Eine Eigenleistung eines privaten Haushaltes oder Unternehmens, die zur Vergrößerung des Sachvermögens führt (Hausbau, Erweiterung der produktiven Sachausstattung, Entwicklung eines patentgeschützten Produktionsverfahrens und so weiter) kann buchhalterisch aktiviert werden und mit Mehrung des Sachvermögens das Reinvermögen steigern, ohne dass (zumindest in gleicher Höhe) das Nettogeldvermögen irgendeiner Partei berührt wäre.

Das Nettogeldvermögen (NGV) eines Wirtschafters ist nichts anderes als die Differenz seiner vorhandenen Zahlungsmittel (Bargeld und Bankeinlagen) zuzüglich der Geldforderungen gegenüber Dritten abzüglich der eigenen Geldverbindlichkeiten gegenüber Dritten. Trivialerweise kommt daher in unserer monetären Marktwirtschaft Geldvermögen durch Einnahme-Ausgabe-Differenzen in die Welt.

In einer fiktiven monetären Marktwirtschaft, in der weitgehend Einnahme-Ausgabe-Gleichschritt herrscht, gäbe es kaum Nettogeldvermögen. Trotzdem wäre dort eine Steigerung des Reinvermögens möglich. Dies zeigt sich leicht, wenn wir von der Vermögenssprache zur Einkommenssprache wechseln: Wer einen Teil seines Einkommens, statt es völlig zu verkonsumieren, für die Mehrung des Sachvermögens verausgabt, vermehrt damit auch sein Reinvermögen. Dafür ist die Änderung des Nettogeldvermögens saldenmechanisch nicht zwingend erforderlich. Die Verausgabung eines Teils des Einkommens für die Vergrößerung des Sachvermögens ist mit Einnahme-Ausgabe-Gleichschritt kompatibel.

Die Verbindung zwischen der Vermögenssprache (NGV, SV, RV) und der Einkommenssprache (Einkommen, Konsum) erschließt sich mit folgenden Überlegungen[v]: Das gesamte Einkommen einer Einheit oder Gesamtheit ist gleich seinem/ihrem Konsum zuzüglich seiner/ihrer Reinvermögensveränderung. Derjenige Teil des Einkommens (als Sach- oder Nettogeldvermögen), den ein Wirtschafts-Subjekt nicht für den Konsum verwendet, mehrt sein Reinvermögen. Konsum ist Verbrauch eigenen Sachvermögens oder Ausgabe für den Kauf von Sachvermögen oder Dienstleistung anderer mit anschließendem Verbrauch. Der Vermögenszuwachs besteht ausschließlich aus Sachvermögenszuwachs und Nettogeldvermögenszuwachs. In Gleichungen geschrieben:

Y (Einkommen) = ∆RV (Reinvermögensveränderung) + C (Konsum)

∆RV = I (Investition) + ∆NGV (Nettogeldvermögensänderung)

Also: Y = I + ∆NGV + C

Also für die Gesamtökonomie oder bei Einnahme-Ausgabe-Gleichschritt (ausgeglichener LB) auch für die Wirtschaftssubjekte oder Teilgruppen:

Y = I + C (weil hier immer ∆NGV = 0)

Rückbezogen auf das „Sparen“ in üblicher VGR-Bedeutung als Reinvermögensänderung lässt sich damit formulieren:

  1. Allgemein: S = I + ∆NGV
  2. Gesamtheit (geschlossene Wirtschaft insgesamt): S = I (+ 0)
  3. Partialgruppe (pg) und Komplementärgruppe (kg): Spg = Ipg + NGVpg           Skg = Ikg + NGVkg
  4. Saldenmechanik: Spg = Ipg NGVkg            Skg = Ikg NGVpg

Die letzte Zeile 4. sagt aus, dass die Reinvermögensänderung einer Partialgruppe ihrer Sachvermögensänderung abzüglich der Nettogeldvermögensänderung der Komplementärgruppe entspricht.

Etwas verwunderlich ist, dass Grunert sich das Problem mit der Unmöglichkeit der Reinvermögensmehrung bei Einnahme-Ausgabe-Gleichschritt einhandelt, wo er doch in seiner Darstellung der Theorie von Kalecki nachzeichnet, was die Größe des gesamten Unternehmergewinns (=Einkommen der Unternehmer) einer Volkswirtschaft ausmacht:

„Die Bruttogewinne nach Steuern sind umso höher, je höher die Bruttoinvestitionen, je größer das staatliche Haushaltsdefizit, je höher die Exportüberschüsse, je höher der Konsum der Kapitaleigner und je geringer die Ersparnisse der Arbeitnehmer sind.“ [vi]

Oder als Gleichung:

Pn = I + (G – T) + NX + Cp – Sw
U-Gewinn = Investitionen + Staatssaldo + LB-Saldo + U-Konsum – Geldersparnis Arbeitnehmer

Der Gewinn der Unternehmer oder das Unternehmereinkommen (Pn) ist gleich ihrer Investitionen (I) zuzüglich des Staatsdefizits (G-T), des Leistungsbilanzsaldos (NX) und des Unternehmerkonsums (Cp) und abzüglich der NGV-Mehrung der privaten Haushalte (Sw). Wenn wir hier – entsprechend unserem obigen einfachen Beispiel – das Staatsbudget und die Leistungsbilanz als ausgeglichen annehmen und die privaten Haushalte keinen Einnahme-Ausgabe-Saldo aufweisen, ergibt sich:

Pn = I + Cp

Das Unternehmereinkommen (der Unternehmer-Gewinn) besteht dann aus den Investitionen und dem Unternehmerkonsum. Da die Unternehmergruppe als Gesamtheit im gewählten Beispiel keine Veränderung im Nettogeldvermögen erfährt, ergibt sich, dass die Unternehmerinvestitionen sich per Saldo selber finanzieren, bei Einnahme-Ausgabe-Gleichschritt ohne Verschuldung oder Nettogeldvermögens-Mehrung, bei Ungleichschritt gibt es Geldvermögensumschichtungen innerhalb der Gruppe der Unternehmer, die sich als Bankkredite oder direkte Unternehmenskredite darstellen können. Der Gesamtzuwachs des Reinvermögens des Unternehmenssektors durch die Investition (I) ist jedenfalls nicht durch eine Veränderung des NGV des Unternehmenssektors zustande gekommen. Dies konnte sich aufgrund der Annahmen eben nicht verändert haben. Zwangsläufig ergibt sich: Die Unternehmerersparnis ist für die Gesamtgruppe per Saldo Sachvermögensmehrung. Wir landen auch hier wieder bei der altbekannten Ex-post-Gleichung I = S.


[i] Auch in der Kritik von Heiner Flassbeck an Paul Krugman finden sich zwei verschiedene Begriffe der „Ersparnis“ oder des „Sparens“, ohne dass dies im Artikel selbst transparent würde, einmal als ∆RV, das andere Mal als ∆NGV.
[ii] Wolfgang Stützel, Paradoxa der Geld- und Konkurrenzwirtschaft, Aalen 1979, S. 64f: „Einnahmevorsprung ist nicht identisch mit ‚Ersparnis‘, Ausgabevorsprung ist nicht identisch mit ‚Investition‘“
[iii] Zum Beispiel auch hier: Heiner Flassbeck, Friederike Spiecker: Der Staat als Schuldner – Quadratur des Bösen?
[iv] Wolfgang Cezanne, Allgemeine Volkswirtschaftslehre, 4. Aufl. München Wien 1999, S. 238 ff oder online hier
[v] Vgl. auch Wolfgang Stützel, Volkswirtschaftliche Saldenmechanik, 2. Auflage, Tübingen 1978, S. 76
[vi] u.a. hier

Anmelden